ATTO Korea Website

본문 바로가기

쇼핑몰 검색

Home 다운로드 References
  • 다운로드 

  • References

    Some of published scientific literatures in which ATTO products were used are listed.

    Product list

    Cellgraph AB-3000B
    1. H. Hoshino, Y. Nakajima and Y. Ohmiya, Luciferase-YFP fusion tag with enhanced emission for single-cell luminescence imaging. Nature Methods, 4(8), 637-639 (2007)[Nature Methods] / [PubMed]
    2. C. Wu, K. Mino, H. Akimoto, M. Kawabata, K. Nakamura, M. Ozaki and Y. Ohmiya, In vivo far-red luminescence imaging of a biomarker based on BRET fromCypridina bioluminescence to an organic dye. Proc. Natl. Acad. Sci. U.S.A., 106(37), 15599-15603 (2009)
    3. Y. Nakajima, T. Yamazaki, S. Nishii, T. Noguchi, H. Hoshino, K. Niwa, V. R. Viviani and Y. Ohmiya, Enhanced beetle luciferase for high-resolution bioluminescence imaging. PLoS One, 5(4), e10011 (2010)
    4. H. Kwon, T. Enomoto, M. Shimogawara, K. Yasuda, Y. Nakajima and Y. Ohmiya, Bioluminescence imaging of dual gene expression at the single-cell level.Biotechniques, 48(6), 460-462 (2010)
    5. X. Li, Y. Nakajima, K. Niwa, VR. Viviani and Y. Ohmiya, Enhanced red-emitting railroad worm luciferase for bioassays and bioimaging. Protein Sci., 19, 26-33 (2010)
    6. Y. Nakajima and Y. Ohmiya, Bioluminescence assays: multicolor luciferase assay, secreted luciferase assay and imaging luciferase assay. Expert. Opin. Drug Discov., 5(9), 835-849 (2010)
    7. H. Kwon, Y. Ohmiya, K. Honma, S. Honma, T. Nagai, K. Saito and K. Yasuda, Synchronized ATP oscillations have a critical role in prechondrogenic condensation during chondrogenesis. Cell Death Disease, 3. e278 (2012)
    8. C.Wu, KY. Wang, X. Guo, M. Sato, M. Ozaki, S. Shimajiro, Y. Ohmiya and Y. Sasaguri, Rapid methods of detecting the target molecule in immunohistology using a bioluminescence probe. Luminescence, 28(1), 38-43 (2013)
    9. HK. Choe, HD. Kim, SH. Park, HW. Lee, JY. Park, JY. Seong, SL. Lightman, GH. Son and K. Kim, Synchronous activation of gonadotropin-releasing hormone gene transcription and secretion by pulsatile kisspeptin stimulation. Proc. Natl. Acad.Sci. U.S.A.,110(14),5677-5682 (2013)
    10. HJ. Kwon, Y. Ohmiya and K. Yasuda, Dual-color system for simultaneously monitoring intracellular Ca2+ and ATP dynamics. Anal. Biochem., 430(1), 45-47 (2012)
    11. S. Koinuma, T. Asakawa, M. Nagano, K. Furukawa, M. Sujino, K. Masumoto, Y. Nakajima, S. Hashimoto, K. Yagita, Y. Shigeyoshi, Regional circadian period difference in the suprachiasmatic nucleus of the mammalian circadian center. Eur. J. Neurosci., 38(6), 2832-41 (2013)
    12. SK. Chun, J. Jang, S. Chung, H. Yun, NJ. Kim, JW. Jung, GH. Son, YG. Suh and K. Kim, Identification and Validation of Cryptochrome Inhibitors That Modulate the Molecular Circadian Clock. ACS Chem. Biol., 9(3), 703-10 (2014)
    13. M. Yasunaga, Y. Nakajima and Y. Ohmiya, Dual-color bioluminescence imaging assay using green- and red-emitting beetle luciferases at subcellular resolution. Anal. Bioanal. Chem., 406(23), 5735-5742 (2014)
    Product information of AB-300B Cellgraph

    Cellgraph is an imaging system to detect low-level light emission in a single living cell by using a highly sensitive EM-CCD camera and luciferase markers. Video clips of live cells and tissues under culture condition, captured using cellgraph, are presented on the page bellow.

    Page Top

    Kronos AB-2500, Kronos Dio AB-2550
    1. (Hormone, CRE) P. J. He, Y. Fujimoto, N. Yamauchi and M. Hattori, Real-time monitoring of cAMP response element binding protein signaling in porcine granulosa cells modulated by ovarian factors. Mol. Cell. Biochem., 290(1-2), 177-184 (2006)[IngentaConnect]
    2. (Gene silencing by siRNA) F. Sato, M. Kurokawa, N. Yamauchi and M. Hattori, Gene silencing of myostatin in differentiation of chicken embryonic myoblasts by small interfering RNA. Am. J. Physiol., Cell physiol., 291(3), C538-C545 (2006)[AJP-Cell Physiology]
    3. (Clock gene) I. Kwon, J. Lee, S. H. Chang, N. C. Jung, B. J. Lee, G. H. Son, K. Kim and K. H. Lee, BMAL1 shuttling controls transactivation and degradation of the CLOCK/BMAL1 heterodimer. Mol. Cell. Biol., 26(19), 7318-7330 (2006)
    4. (Clock gene) A. Fujioka, N. Takashima and Y. Shigeyoshi, Circadian rhythm generation in a glioma cell line. Biochem. Biophys. Res. Commun., 346(1), 169-174 (2006)
    5. (Clock gene) S. Nishide, S. Honma, Y. Nakajima, M. Ikeda, K. Baba, Y. Ohmiya and K. Honma, New reporter system for Per1 and Bmal1 expressions revealed self-sustained circadian rhythms in peripheral tissues. Genes Cells, 11, 1173-1182 (2006) [Genes to Cells]
    6. (Clock gene) P. J. He, M. Hirata, N. Yamauchi, S. Hashimoto and M. Hattori, The disruption of circadian clockwork in differentiating cells from rat reproductive tissues as identified by in vitro real-time monitoring system. J. Endocrinol., 193, 413-420 (2007)
    7. (Hormone, PRE) H. Fukuda, P. J. He, K. Yokota, T. Soh, N. Yamauchi and M. Hattori, Progesterone-dependent and -independent expression of the multidrug resistance type I gene in porcine granulosa cells. Mol. Cell. Biochem., 298, 179-186 (2007)[SpringerLink]
    8. (Clock gene) P. J. He, M. Hirata, N. Yamauchi, S. Hashimoto and M. Hattori, Gonadotropic regulation of circadian clockwork in rat granulose cells. Mol. Cell. Biochem., 302, 111-118 (2007)[SpringerLink]
    9. (Clock gene) T. Ohno, Y. Ohnishi and N. Ishida, A novel E4BP4 element drives circadian expression of mPeriod2. Nucleic Acids Res., 35(2), 648-655 (2007)[Nucleic Acids Research]
    10. (Clock gene) H. S. Shim, H. Kim, J. Lee, G. H. Son, S. Cho, T. H. Oh, S. H. Kang, D. S. Seen, K. H. Lee and K. Kim, Rapid activation of CLOCK by Ca2þ-dependent protein kinase C mediates resetting of the mammalian circadian clock. EMBO rep., 8, 366-371 (2007)[EMBO reports]
    11. (Clock gene) J. Hirayama, S. Sahar, B. Grimaldi, T. Tamaru, K. Takamatsu, Y. Nakahata and P. Sassone-Corsi, CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature, 450, 1086-1090 (2007)
    12. (Dual color luciferase, Clock gene) T. Noguchi, M. Ikeda, Y. Ohmiya and Y. Nakajima, Simultaneous monitoring of independent gene expression patterns in two types of cocultured fibroblasts with different color-emitting luciferases. BMC Biotechnol., 8:40 (2008)
    13. (Clock gene) M. Akashi, N. Hayasaka, S. Yamazaki and K. Node, Mitogen-activated protein kinase is a functional component of the autonomous circadian system in the suprachiasmatic nucleus. J. Neurosci., 28(18), 4619-4623 (2008)
    14. (DDS, Gene transfection) S. Takae, K. Miyata,  M. Oba, T. Ishii, N. Nishiyama, K. Itaka, Y. Yamasaki, H. Koyama, and K. Kataoka, PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. J. Am. Chem. Soc., 130, 6001-6009 (2008)
    15. (Clock gene) Y. Onishi, S. Hanai, T. Ohno, Y. Hara and N. Ishida, Rhythmic SAF-A binding underlies circadian transcription of the Bmal1 gene. Mol. Cell. Biol., 28(10), 3477-3488 (2008)
    16. (Clock gene) J. Lee, Y. Lee, M. J. Lee, E. Park, S. H. Kang, C. H. Chung, K. H. Lee and K. Kim, Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex. Mol. Cell. Biol., 28(19), 6056-6065 (2008)
    17. (Clock gene) A. Yoshikawa, H. Shimada, K. Numazawa, T. Sasaki, M. Ikeda, M. Kawashima, N. Kato, K. Tokunaga and T. Ebisawa, Establishment of human cell lines showing circadian rhythms of bioluminescence. Neurosci. Lett., 446, 40-44 (2008)
    18. (Clock gene) Y. Yamanaka, S. Honma and K. Honma, Scheduled exposures to a novel environment with a running-wheel differentially accelerate re-entrainment of mice peripheral clocks to new light–dark cycles. Genes to Cells, 13, 497-507 (2008)
    19. (Clock gene) N. Kon, T. Hirota, T. Kawamoto, Y. Kato, T. Tsubota and Y. Fukada, Activation of TGF-β/activin signalling resets the circadian clock through rapid induction of Dec1 transcripts. Nature Cell Biol., 10(12), 1463-1469 (2008)
    20. (DDS, Gene transfection) M. Oba, K. Aoyagi, K. Miyata, Y. Matsumoto, K. Itaka, N. Nishiyama, Y. Yamasaki, H. Koyama and K. Kataoka, Polyplex micelles with cyclic RGD peptide ligands and disulfide cross-links directing to the enhanced transfection via controlled intracellular trafficking. Mol. Pharm., 5(6), 1080-1092 (2008)
    21. (Clock gene) K. Ohsaki, K. Oishi, Y. Kozono, K. Nakayama, K. I. Nakayama and N. Ishida, The role of β-TrCP1 and β-TrCP2 in circadian rhythm generation by mediating degradation of clock protein PER2. J. Biochem., 144(5), 609-618 (2008)
    22. (Clock gene) S. Nishide, S. Honma and K. Honma, The circadian pacemaker in the cultured suprachiasmatic nucleus from pup mice is highly sensitive to external perturbation. Eur. J. Neurosci., 27(19), 2686-2690 (2008)
    23. (Clock gene) F. Yang, Y. Nakajima, M. Kumagai, Y. Ohmiya and M. Ikeda, The molecular mechanism regulating the autonomous circadian expression of Topoisomerase I in NIH3T3 cells. Biochem. Biophys. Res. Commun., 380(1), 22-27 (2009)
    24. (Clock gene, Hormone) S. Koinuma, K. Yagita, A. Fujioka, N. Takashima, T. Takumi and Y. Shigeyoshi, The resetting of the circadian rhythm by Prostaglandin J2 is distinctly phase-dependent. FEBS Lett., 583, 413-418 (2009)
    25. (Apoptosis) A. Kanno, Y. Umezawa and T. Ozawa, Detection of apoptosis using cyclic luciferase in living mammals. Methods Mol. Biol., 574, 105-114 (2009)
    26. (Clock gene, Hormone) M. Hirata, PJ. He, N. Shibuya, M. Uchikawa, N. Yamauchi, S. Hashimoto and M. Hattori, Progesterone, but not estradiol, synchronizes circadian oscillator in the uterus endometrial stromal cells. Mol. Cell. Biochem., 324(1-2), 31-38 (2009)
    27. (Differenciation) M. Kurokawa, F. Sato, S. Aramaki, T. Soh, N. Yamauchi and M. Hattori, Monitor of the myostatin autocrine action during differentiation of embryonic chicken myoblasts into myotubes: effect of IGF-I. Mol. Cell. Biochem., 331(1-2), 193-199 (2009)
    28. (Clock gene) M. Sasaki, H. Yoshitane, NH. Du, T. Okano and Y. Fukada, Preferential inhibition of BMAL2-CLOCK activity by PER2 reemphasizes its negative role and a positive role of BMAL2 in the circadian transcription. J. Biol. Chem., 284(37), 25149-25159 (2009)
    29. (Glycogenesis, Clock gene) R. Doi, K. Oishi and N. Ishida, CLOCK regulates circadian rhythms of hepatic glycogen synthesis through transcriptional activation of Gys2. J. Biol. Chem., 285(29), 22114-22121 (2010)
    30. (Apoptosis, Clock gene) K. Yoshida, P. He, N. Yamauchi, S. Hashimoto and M. Hattori, Up-regulation of circadian clock gene Period 2 in the prostate mesenchymal cells during flutamide-induced apoptosis. Mol. Cell. Biochem., 335(1-2), 37-45 (2010)
    31. (Clock gene) Y. Lee, J. Lee, I. Kwon, Y. Nakajima, Y. Ohmiya, GH. Son, KH. Lee and K. Kim, Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock. J. Cell Sci., 123(20), 3547-3557 (2010)
    32. (Clock gene) T. Hirota, N. Kon, T. Itagaki, N. Hoshina, T. Okano, Y. Fukada, Transcriptional repressor TIEG1 regulates Bmal1 gene through GC box and controls circadian clockwork. Genes Cells., 15(2), 111-121 (2010)
    33. (cAMP monitoring) M. Takeuchi†, Y. Nagaoka, T. Yamada, H. Takakura and T. Ozawa, Ratiometric bioluminescence indicators for monitoring cyclic adenosine 3',5'-monophosphate in live cells based on luciferase-fragment complementation. Anal. Chem., 82(22), 9306-9313 (2010)
    34. (DDS, Gene transfection) K. Miyata, N. Gouda, H. Takemoto, M. Oba, Y. Lee, H. Koyama, Y. Yamasaki, K. Itaka, N. Nishiyama, K. Kataoka, Enhanced transfection with silica-coated polyplexes loading plasmid DNA. Biomaterials, 31(17), 4764-4770 (2010)
    35. (Gene therapy) M. Oba, Y. Vachutinsky, K. Miyata, M. R. Kano, S. Ikeda, N. Nishiyama, K. Itaka, K. Miyazono, H. Koyama and K. Kataoka, Antiangiogenic gene therapy of solid tumor by systemic injection of polyplex micelles loading plasmid DNA encoding soluble flt-1. Mol. Pharm., 7(2), 501-509 (2010)
    36. (Dual color luciferase, Clock gene) T. Noguchi, T. Michihata, W. Nakamura, T. Takumi, R. Shimizu, M. Yamamoto, M. Ikeda, Y. Ohmiya and Y. Nakajima, Dual-color luciferase mouse directly demonstrates coupled expression of two clock genes. Biochemistry, 49(37), 8053-8061 (2010)
    37. (Clock gene) Y. Onishi, HSG cells, a model in the submandibular clock. Biosci. Rep., 31(1), 57-62 (2011)
    38. (Stress response, Heat shock protein) J. Sun, C. S. Conn, Y. Han, V. Yeung and SB. Qian, PI3K-mTORC1 attenuates stress response by inhibiting cap-independent Hsp70 translation. J. Biol. Chem., 286(8), 6791-6800 (2011)
    39. (Clock gene) M. Uchikawa, M. Kawamura, N. Yamauchi and M. Hattori, Down-regulation of circadian clock gene Period 2 in uterine endometrial stromal cells of pregnant rats during decidualization. Chronobiol. Int., 28(1), 1-9 (2011)
    40. (Apoptosis, Differentiation, Clock gene) G. Chu, K. Yoshida, S. Narahara, M. Uchikawa, M. Kawamura, N. Yamauchi, Y. Xi, Y. Shigeyoshi, S. Hashimoto and M. Hattori, Alterations of circadian clockworks during differentiation and apoptosis of rat ovarian cells. Chronobiol. Int., 28(6), 477-487 (2011)
    41. (Allergy, Clock gene) Y. Nakamura, D. Harama, N. Shimokawa, M. Hara, R. Suzuki, Y. Tahara, K. Ishimaru, R. Katoh, K. Okumura, H. Ogawa, S. Shibata and A. Nakao, Circadian clock gene Period2 regulates a time-of-day-dependent variation in cutaneous anaphylactic reaction. J. Allergy Clin. Immunol., 127(4), 1038-1045 (2011)
    42. (Metabolism, Clock gene) H. Oike, K. Nagai, T. Fukushima, N. Ishida and M. Kobori, Feeding cues and injected nutrients induce acute expression of multiple clock genes in the mouse liver. PLoS One, 6(8), e23709 (2011)
    43. (Food, Clock gene) H. Oike, M. Kobori, T. Suzuki and N. Ishida, Caffeine lengthens circadian rhythms in mice. Biochem. Biophys. Res. Commun., 410(3), 654-658 (2011)
    44. (Toxicological screening) M. Yasunaga, N. Oumi, M. Osaki, Y. Kazuki, T. Nakanishi, M. Oshimura and K. Sato, Establishment and characterization of a transgenic mouse model for in vivo imaging of bmp4 expression in the pancreas. PLoS One, 6(9), e24956 (2011)
    45. (siRNA, DDS)RJ. Christie, K. Miyata, Y. Matsumoto, T. Nomoto, D. Menasco, TC Lai, M. Pennisi, K. Osada, S. Fukushima, N. Nishiyama, Y. Yamasaki and K. Kataoka, Effect of polymer structure on micelles formed between siRNA and cationic block copolymer comprising thiols and amidines. Biomacromolecules, 12(9), 3174-3185 (2011)
    46. (Clock gene) T. Tamaru, M. Hattori, K. Honda, I. Benjamin, T. Ozawa and K. Takamatsu, Synchronization of circadian Per2 rhythms and HSF1-BMAL1:CLOCK interaction in mouse fibroblasts after short-term heat shock pulse. PLoS One, 6(9), e24521 (2011)
    47. (Clock gene) DY. Kim, E. Kwak, SH. Kim, KH. Lee, KC. Woo and KT. Kim, hnRNP Q mediates a phase-dependent translation-coupled mRNA decay of mouse Period3. Nucleic Acids Res., 39(20), 8901-8914 (2011)
    48. (Photoreceptor) D. Kojima, S. Mori, M. Torii, A. Wada, R. Morishita and Y. Fukada, UV-sensitive photoreceptor protein OPN5 in humans and mice. PLoS One, 6(10), e26388 (2011)
    49. (Cell maturation, Clock gene) G. Chu, I. Misawa, H. Chen, N. Yamauchi, Y. Shigeyoshi, S. Hashimoto and M. Hattori, Contribution of FSH and triiodothyronine to the development of circadian clocks during granulosa cell maturation. Am. J. Physiol. Endocrinol. Metab., Epub (2011)
    50. (Clock gene) Y. Onishi, K. Oishi, Y. Kawano and Y. Yamazaki, The harmala alkaloid harmine is a modulator of circadian Bmal1 transcription. Biosci. Rep., 32(1), 45-52 (2012)
    51. (Clock gene) S. Nishide, D. Ono, Y. Yamada, S. Honma and K. Honma, De novo synthesis of PERIOD initiates circadian oscillation in cultured mouse suprachiasmatic nucleus after prolonged inhibition of protein synthesis by cycloheximide. Eur. J. Neurosci., 35(2), 291-299 (2012)
    52. (Apoptosis) M. Ozaki, S. Haga and T. Ozawa, In Vivo Monitoring of Liver Damage Using Caspase-3 Probe. Theranostics, 2(2), 207-214 (2012)
    53. (Chondrogenesis, ATP oscillations) HJ. Kwon, Y. Ohmiya, K. Honma, S. Honma, T. Nagai, K. Saito and K. Yasuda, Synchronized ATP oscillations have a critical rolein prechondrogenic condensation during chondrogenesis. Cell Death Dis, 3, e278 (2012)
    54. (Clock gene) H. Chen, G. Chu, L. Zhao, N. Yamauchi, Y. Shigeyoshi, S. Hashimoto and M. Hattori, Rev-erbα regulates circadian rhythms and StAR expression in rat granulosa cells as identified by the agonist GSK4112. Biochem. Biophys. Res. Commun., 420(2), 374-379 (2012)
    55. (Dual color luciferase, Clock gene) T. Noguchi, M. Ikeda, Y. Ohmiya and Y. Nakajima, A dual-color luciferase assay system reveals circadian resetting of cultured fibroblasts by co-cultured adrenal glands. PLoS One, 7(5), e37093 (2012)
    56. (siRNA, DDS) RJ. Christie, Y. Matsumoto, K. Miyata, T. Nomoto, S. Fukushima, K. Osada, J. Halnaut, F. Pittella, HJ. Kim, N. Nishiyama and K. Kataoka, Targeted polymeric micelles for siRNA treatment of experimental cancer by intravenous injection. ACS Nano, Epub (2012)
    57. (Clock gene) H. Yoshitane, S. Honma, K. Imamura, H. Nakajima, S. Nishide, D. Ono, H. Kiyota, N. Shinozaki, H. Matsuki, N. Wada, H. Doi, T. Hamada, K. Honma and Y. Fukada, JNK regulates the photic response of the mammalian circadian clock. EMBO Rep., 13(5), 455-461 (2012)
    58. (Clock gene) Y. Uchida, T. Osaki, T. Yamasaki, T. Shimomura, S. Hata, K. Horikawa, S. Shibata, T. Todo, J. Hirayama and H. Nishina, Involvement of Stress Kinase Mitogen-activated Protein Kinase Kinase 7 in Regulation of Mammalian Circadian Clock. J. Biol. Chem., 287(11), 8318-26 (2012)
    59. (ATP, Ca2+, Chondrogenesis) HJ. Kwon, Y. Ohmiya and K. Yasuda, Dual-color system for simultaneously monitoring intracellular Ca2+ and ATP dynamics. Anal. Biochem., 430(1), 45-47 (2012)
    60. (Clock gene) Y. Onishi and Y. Kawano, Rhythmic binding of Topoisomerase I impacts on the transcription of Bmal1 and circadian period. Nucleic Acids Res., 40(19), 9482-92 (2012)
    61. (ATP, TGF-β, Chondrogenesis) HJ. Kwon, TGF-β but not BMP signaling induces prechondrogenic condensation through ATP oscillations during chondrogenesis. Biochem. Biophys. Res. Commun., 424(4), 793-800 (2012)
    62. (Chondrogenesis, ATP oscillations) HJ. Kwon, Extracellular ATP signaling via P2X4 receptor and cAMP/PKA signaling mediate ATP oscillations essential for prechondrogenic condensation. J. Endocrinol., 214(3), 337-48 (2012)
    63. (siRNA, DDS) N. Gouda, K. Miyata, RJ. Christie, T. Suma, A. Kishimura, S. Fukushima, T. Nomoto, X. Liu, N. Nishiyama, and K. Kataoka, Silica nanogelling of environment-responsive PEGylated polyplexes for enhanced stability and intracellular delivery of siRNA. Biomaterials, 34(2), 562-570 (2013)
    64. (DDS, Gene transfection) S. Mochizuki, N. Kanegaea, K. Nishina, Y. Kamikawa, K. Koiwai, H. Masunaga and K. Sakurai, The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for DNA transfection cooperating with a cationic lipid bearing ethylenediamine. Biochim. Biophys. Acta., 1828(2), 412-418 (2012)
    65. (Apoptosis, Bioluminescent probe) M. Ozaki, S. Haga, T. Ozawa, In Vivo Monitoring of Liver Damage Using Caspase-3 Probe. Theranostics, 2(2), 207-14 (2012)
    66. (mTOR, Nutrient signaling) CS. Conn and SB. Qian, Nutrient Signaling in Protein Homeostasis: An Increase in Quantity at the Expense of Quality. Sci. Signal, 6(271), ra24 (2013)
    67. (Clock gene) S. Cheon, N. Park, S. Cho and K. Kim, Glucocorticoid-mediated Period2 induction delays the phase of circadian rhythm. Nucleic Acid Res., 41(12), 6161-74 (2013)
    68. (Clock gene) H. Chen, L. Zhao, M. Kumazawa, N. Yamauchi, Y. Shigeyoshi, S. Hashimoto and M. Hattori, Downregulation of core clock gene Bmal1 attenuates expression of progesterone and prostaglandin biosynthesis-related genes in rat luteinizing granulosa cells. Am. J. Physiol. Cell Physiol., 304(12), C1131-40 (2013)
    69. (Clock gene) H. Chen, L. Zhao, G. Chu, G. Kito, N. Yamauchi, Y. Shigeyoshi, S. Hashimoto and M. Hattori, FSH induces the development of circadian clockwork in rat granulosa cells via a gap junction protein Cx43-dependent pathway. Am. J. Physiol. Endocrinol. Metab., 304(6), E566-75 (2013)
    70. (Clock gene) H. Tasaki, L. Zhao, K. Isayama, H. Chen, N. Yamauchi, Y. Shigeyoshi, S. Hashimoto and M. Hattori, Profiling of circadian genes expressed in the uterus endometrial stromal cells of pregnant rats as revealed by DNA microarray coupled with RNA interference. Front Endocrinol., 4, 82 (2013)
    71. (Clock gene) F. Yang, I. Inoue, M. Kumagai, S. Takahashi, Y. Nakajima and M. Ikeda, Real-Time Analysis of the Circadian Oscilletion of the Rev-Erbβ Promoter. J. Atheroscler. Thromb., 20(3), 267-76 (2013)
    72. (Clock gene) R. Satou, N. Sugihara, Y. Ishizuka, T. Matsukubo and Y. Onishi, DNA methylation of the BMAL1 promoter. Biochem. Biophys. Res. Commun., 440(3), 449-53 (2013)
    73. (Bioluminescent probe, Signal transduction) L. Yang, Y. Nasu, M. Hattori, H. Yoshimura, A. Kanno and T. Ozawa, Bioluminescent Probes to Analyze Ligand-Induced Phosphatidylinositol 3,4,5-Trisphosphate Production with Split Luciferase Complementation. Anal. Chem., 85(23), 11352-9 (2013)
    74. (Bioluminescent probe, Intracellular acidification) M. Hattori, S. Haga, H. Takakura, M. Ozaki and T. Ozawa, Sustained accurate recording of intracellular acidification in living tissues with a photo-controllable bioluminescent protein. Proc. Natl. Acad. Sci. USA., 110(23), 9332-7 (2013)
    75. (Clock gene) A. Hirano, K. Yumimoto, R. Tsunematsu, M. Matsumoto, M. Oyama, H. Kozuka-Hata, T. Nakagawa, D. Lanjakornsiripan, KI. Nakayama and Y. Fukada, FBXL21 Regulates Oscillation of the Circadian Clock through Ubiquitination and Stabilization of Cryptochromes. Cell, 152(5), 1106-18 (2013)
    76. (Proteolysis, siRNA) Y. Tsuchiya, H. Taniguchi, Y. Ito, T. Morita, MR. Karim, N. Ohtake, K. Fukagai, T. Ito, S. Okamuro, S. Iemura, T. Natsume, E. Nishida and A. Kobayashi, The Casein Kinase 2-Nrf1 Axis Controls the Clearance of Ubiquitinated Proteins by Regulating Proteasome Gene Expression. Mol. Cell Biol., 33(17), 3461-72 (2013)
    77. (Chondrogenesis, ATP oscillations) HJ. Kwon and Y. Ohmiya, Metabolomic Analysis of Differential Changes in Metabolites during ATP Oscillations in Chondrogenesis. Biomed. Res. Int., Epub 213972 (2013)
    78. (Chondrogenesis, ATP oscillations) HJ. Kwon, ATP oscillations mediate inductive action of FGF and Shh signaling on prechondrogenic condensation. Cell Biochem. Funct., 31(1), 75-81 (2013)
    79. (Chondrogenesis , ATP, Oxygen) HJ. Kwon, Y. Ohmiya and K. Yasuda, Simultaneous monitoring of intracellular ATP and oxygen levels in chondrogenic differentiation using a dual-color bioluminescence reporter. Luminescence, Epub 22 Oct (2013)
    80. (Clock gene) A. Natsubori, K. Honma and S. Honma, Differential responses of circadian Per2 expression rhythms in discrete brain areas to daily injection of methamphetamine and restricted feeding in rats. Eur. J. Neurosci., 37, 251-8 (2013)
    81. (Clock gene) D. Ono, S. Honma and K. Honma, Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus. Nat. Commun., 4, 1666 (2013)
    82. (Clock gene) JY. Noh, DH. Han, MH. Kim, IG. Ko, SE. Kim, N. Park, HK. Choe, KH. Kim, K. Kim, CJ. Kim and S. Cho, Presence of multiple peripheral circadian oscillators in the tissues controlling voiding function in mice. Exp. Mol. Med., 46, e81 (2014)
    83. (Clock gene) S. Nishide, K. Hashimoto, T. Nishio, K. Honma, S. Honma, Organ-specific development characterizes circadian clock gene Per2 expression in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 306(1), R67-74 (2014)
    84. (Clock gene) NC. Gossan, F. Zhang, B. Guo, D. Jin, H. Yoshitane, A. Yao, N. Glossop, YQ. Zhang, Y. Fukada and QJ. Meng, The E3 ubiquitin ligase UBE3A is an integral component of the molecular circadian clock through regulating the BMAL1 transcription factor. Nucleic Acids Res., 42(9), 5765-75 (2014)
    85. (Clock gene) A. Natsubori, K. Honma and S. Honma, Dual regulation of clock gene Per2 expression in discrete brain areas by the circadian pacemaker and methamphetamine-induced oscillator in rats. Eur. J. Neurosci., 39(2), 229-40 (2014)
    86. (DDS) H. Tanaka, H. Akita, R. Ishiba, K. Tange, M. Arai, K. Kubo and H. Harashima, Neutral biodegradable lipid-envelope-type nanoparticle using vitamin A-Scaffold for nuclear targeting of plasmid DNA. Biomaterials, 35(5), 1755-61 (2014)
    87. (DDS, siRNA) S. Murayama, P. Kos, K. Miyata, K Kataoka, E. Wagner and M. Kato, Gene Regulation by Intracellular Delivery and Photodegradation of Nanoparticles Containing Small Interfering RNA. Macromol. Biosci., 14(5), 626-31 (2014)
    88. (Clock gene) Y. Ogawa, Y. Kawano, Y. Yamazaki and Y. Onishi, Shikonin shortens the circadian period: Possible involvement of Top2 inhibition. Biochem. Biophys. Res. Commun., 443(1), 339-43 (2014)
    89. (DDS, siRNA) HJ. Kim, K. Miyata, T. Nomoto, M. Zheng, A. Kim, X. Liu, H. Cabral, RJ. Christie, N. Nishiyama and K. Kataoka, siRNA delivery from triblock copolymer micelles with spatially-ordered compartments of PEG shell, siRNA-loaded intermediate layer, and hydrophobic core. Biomaterials, 35(15), 4548-56 (2014)
    90. (Clock gene) SK. Chun, J. Jang, S. Chung, H. Yun, NJ. Kim, JW. Jung, GH. Son, YG. Suh and K. Kim, Identification and Validation of Cryptochrome Inhibitors That Modulate the Molecular Circadian Clock. ACS Chem. Biol., 9(3), 703-10 (2014)
    91. (DDS, Cancer) GX. Zhao, H. Tanaka, CW. Kim, K. Li, D. Funamoto, T. Nobori, Y. Nakamura, T. Niidome, A. Kishimura, T. Mori and Y. Katayama, Histidinylated poly-L-lysine-based vectors for cancer-specific gene expression via enhancing the endosomal escape. J. Biomater. Sci. Polym. Ed., 25(5), 519-34 (2014)
    92. (Clock gene) SR. Moore, J. Pruszka, J. Vallance, E. Aihara, T. Matsuura, MH. Montrose, NF. Shroyer and CI. Hong, Robust circadian rhythms in organoid cultures from PERIOD2::LUCIFERASE mouse small intestine. Dis. Models Mech., 7(9), 1123-30 (2014)
    93. (DDS, siRNA) Y. Oe, RJ. Christie, M. Naito, SA. Low, S. Fukushima, K. Toh, Y. Miura, Y. Matsumoto, N. Nishiyama, K. Miyata and K. Kataoka, Actively-targeted polyion complex micelles stabilized by cholesterol and disulfide cross-linking for systemic delivery of siRNA to solid tumors. Biomaterials, 35(27), 7887-95 (2014)
    94. (Clock gene) SK. Chun, J. Jang, S. Chung, H. Yun, NJ. Kim, JW. Jung, GH. Son, YG. Suh and K. Kim, Identification and Validation of Cryptochrome Inhibitors That Modulate the Molecular Circadian Clock. ACS Chem. Biol., 9(3), 703-10 (2014)
    95. (Chondrogenesis, ATP oscillations) HJ. Kwon, S. Kurono, Y. Kaneko, Y. Ohmiya and K. Yasuda, Analysis of proteins showing differential changes during ATP oscillations in chondrogenesis. Cell Biochem. Funct., 32(5), 429-37 (2014)
    96. (Clock gene, Allergy) Y. Nakamura, N. Nakano, K. Ishimaru, M. Hara, T. Ikegami, Y. Tahara, R. Katoh, H. Ogawa, K. Okumura, S. Shibata, C. Nishiyama and A. Nakao, Circadian regulation of allergic reactions by the mast cell clock in mice. J. Allergy Clin. Immunol., 133(2), 568-75 (2014)
    97. (Clock gene) M. Kawamura, H. Tasaki, I. Misawa, G. Chu, N. Yamauchi and M. Hattori, Contribution of testosterone to the clock system in rat prostate mesenchyme cells. Andrology, 2(2), 225-33 (2014)
    Product information of AB-2550 Kronos Dio

    Kronos DIo is a bioluminescence measurement system for living cell and tissues using PMT (Photomultiplier Tube), multi-filter system and luciferase markers, providing information of dynamic process in the cell or the tissue.

    Page Top

    LumiFLspectrocapture AB-1850
    1. Chie Suzuki, Yoshihiro Nakajima, Hidetoshi Akimoto, Chun Wu and Yoshihiro Ohmiya, A new additional reporter enzyme, dinoflagellate luciferase, for monitoring of gene expression in mammalian cells. Gene Vol.344, 61-66 (2005) [Science Direct]
    2. Yoshihiro Ohmiya, Satoshi Kojima, Mitsuhiro Nakamura and Haruki Niwa, Bioluminescence in the Limpet-Like Snail, Latia neritoides. Bulletin of the Chemical Society of Japan Vol.78, No.7, 1197-1205 (2005) [Bulletin of the Chemical Society of Japan]
    3. Yoshihiro NAKAJIMA, Koji KOBAYASHI, Kazutoshi YAMAGISHI, Toshiteru ENOMOTO and Yoshihiro OHMIYA, cDNA Cloning and Characterization of a Secreted Luciferase from the Luminous Japanese Ostracod, Cypridina noctiluca. Bioscience, Biotechnology, and Biochemistry Vol.68, No.3, 565-570 (2004) [Bioscience, Biotechnology, and Biochemistry]
    4. Yoshihiro NAKAJIMA, Takuma KIMURA, Chie SUZUKI and Yoshihiro OHMIYA, Improved Expression of Novel Red- and Green-emitting Luciferases of Phrixothrix Railroad Worms in Mammalian Cells. Bioscience, Biotechnology, and Biochemistry Vol. 68, No.4, 948-951 (2004)
    5. Yoshihiro Nakajima, Masaaki Ikeda, Takuma Kimura, Sato Honma, Yoshihiro Ohmiya and  Ken-ichi Honma, Bidirectional role of orphan nuclear receptor RORa in clock gene transcriptions demonstrated by a novel reporter assay system. FEBS Letters 565 122-126 (2004)
    6. Tomomi Otsuji, Emiko Okuda-Ashitaka, Satoshi Kojima, Hidefumi Akiyama, Seiji Ito and Yoshihiro Ohmiya, Monitoring for dynamic biological processing by intramolecular bioluminescence resonance energy transfer system using secreted luciferase.  Analytical Biochemistry 329 230-237 (2004)
    7. Yoshihiro Nakajima, Takuma Kimura, Kazunori Sugata, Toshiteru Enomoto, Atsushi Asakawa, Hidehiro Kubota, Masaaki Ikeda and Yoshihiro Ohmiya, Multicolor luciferase assay system:one-step monitoring of multiple gene expressions with a signal substrate. BioTechniques 38:891-894(June 2005)
    8. Takako Noguchi, Masaaki Ikeda, Yoshihiro Ohmiya and Yoshihiro Nakajima, Simultaneous monitoring of independent gene expression patterns in two types of cocultured fibroblasts with differernt color-emitting luciferase. BMC Biotechnology 2008,8:40
    9. Katsunori Teranishi and Osamu Shimomura, Bioluminescence of the arm light organs of the luminous squid Watasenia scintillans. Biochimica et Biophysica Acta 1780, 784-792(2008)
    10. Rieko Ogura, Naoko Matsuo, Kazuyuki Hiratsuka, Bioluminescence spectra of click beetle luciferase in higher plant cells. Plant Biotechnology 28, 423-426 (2011)
    Product information of AB-1850 LumiFLspectrocapture

    LumiFLspectrocapture is a highly sensitive spectrophotometer that can measure the spectrum of weak light from bioluminescence or chemiluminescence, which was difficult to measure with existing spectrophotometers using photo diodes or PMT. LumiFLspectrocapture can acquire whole range of the light (ranging 400-800nm) simultaneously with an ultrasensitive cooled CCD. It can be a powerful tool in designing bioluminescent/chemiluminescent probe in cell imaging study, or analysis of mechanisms of bioluminescent/chemiluminescent reaction.

    Page Top

    1. Yoshihiro Nakajima, Koji Kobayashi, Kazutoshi Yamagishi, Toshiteru Enomoto and Yoshihiro Ohmiya, cDNA Cloning and Characterization of a Secreted Luciferase from the Luminous Japanese Ostracod,Cypridina noctiluca. Bioscience, Biotechnology, and Biochemistry 68(3), 565-570 (2004)
    2. Kazutoshi Yamagishi, Toshiteru Enomoto and Yoshihiro Ohmiya, Perfusion-cluture-based secreted bioluminescence reporter assay in living cells. Anal Biochem.354(1),15-21 (2006)
    3. Chun Wu, Chie Suzuki-Ogoh, and Yoshihiro Ohmiya, Dual-reporter assay using two secreted luciferase genes. Biotechniques 42:290-292(March 2007)
    4. Ken Nishimura, Hiroaki Segawa, Takahiro Goto, Mariko Morishita, Akinori Masago, Hitoshi Takahashi, Yoshihiro Ohmiya, Takemasa Sakaguchi, Masahiro Asada, Toru Imamura, Kunitada Shimotono, Kozo Takayama, Tetsuya Yoshida and Mahito Nakanishi, Persistent and Stable Gene Expression by a Cytoplasmin RNA Replicon Based on a Noncytopathic Variant Sendai Virus. The Journal of Biological Chemistry 282(37), 27383-27391 (2007)
    5. Toshiyuki Watanabe, Toshiteru Enomoto, Masayuki Takahashi, Sato Honma, Ken-ichi Honma and Yoshihiro Ohmiya, Multichannel perfusion culture bioluminescence reporter system for long-term detection in living cells. Analytical Biochemistry 402,107-109(2010)
    6. Yuki Tochigi, Natsuko Sato, Takehiko Sahara, Chun Wu, Shinya Saito, Tsutomu Irie, Wataru Fujibuchi, Takako Goda, Ryoichi Yamaji, Masahiro Ogawa, Yoshihiro Ohmiya and Satoru Ohgiya, Sensitive and Convenient Yeast reporter Assay for High-Throughput Analysis by Using a Secretory Luciferase from Cypridina noctiluca. Anal Chem. 2010 Jul 1;82(13):5768-76.
    7. Toshiya Arakawa, Tohru Ohta, Yoshihiro Abiko, Miki Okayama, Itaru Mizuguchi and Taishin Takuma, A polymerase chain reaction-based method for constructing a linear vector with titespecific DNA methylation. Analytical Biochemistry 416,211-217 (2011) 

    Page Top

    BactoLumix AB-2960
    1. Yamashoji S, Manome I, Ikedo M, Menadione-catalyzed O2- production by Escherichia coli cells:application of rapid chemiluminescent assay to antimicrobial susceptibility testing. Microbiol Immunol.2001;45(5):333-40.
    2. Yamashoji S, Takeda M, Menadione-catalyzed luminol chemiluminescent assay for the viability of Escherichia coli ATCC25922. Microbiol Immunol.2001;45(11):737-41
    3. Kawasaki S, Yamashoji S, Asakawa A, Isshiki K, Kawamoto S, Menadione-Catalyzed Luminol Chemiluminescence Assay for the Rapid Detection of Viable Bacteria in Foods under Aerobic Conditions. J Food Prot. 2004 Dec;67(12):2767-71.
    4. Yamashoji S, Asakawa A, Kawasaki S, Kawamoto S, Chemiluminescent assay for detection of viable microorganisms. Anal Biochem. 2004 Oct 15;333(2):303-8
    5. Kawasaki S, Yamashoji S, Asakawa A, Isshiki K, Kawamoto S, Menadione-catalyzed luminol chemiluminescence assay for the rapid detection of viable bacteria. Shokuhin Eiseigaku Zasshi.2006 Apr;47(2)J171-7(Article in Japanese)
    Product information of AB-2960 BactoLumix

    BactoLumix is a reagent for chemiluminescent determination of viable bacteria count, which can be used for drug sensitivity test and antibiotic activity test, etc. BactoLumix do NOT need or cause bacteriolysis prior/during the measurement, therefore counted sample can later be used in another examination.

    Page Top

    MPEC AB-2950
    1. Osamu Shimomura, Chun Wu, Akio Murai, and Hideshi Nakamura. Evaluation of Five Imidazopyrazinone-Type Chemiluminescent Superoxide Probes and Their Application to the Measurement of Superoxide Anion Generated by Listeria monocytogenes. Anal.Biochem. 1998, 258 (2) 230-5
    2. Naoyuki Kitagawa, Shun Shimohama, Tomoko Oeda, Kengo Uemura, Ryuichi Kohno, Akira Kuzuya, Hiroshi Shibasaki, and Naoaki Ishii. The Role of the Presenilin-1 Homologue Gene sel-12 of Caenorhabditis elegans in Apoptotic Activities. J Biol. Chem.vol.278 no.14, 12130-12134, 2003
    3. Nanami Senoo-Matsuda, Philip S. Hartman, Akira Akatsuka, Shinichi Yoshimura, and Naoaki Ishii. A Complex II Defect Affects Mitochondrial Structure, Leading to ced-3- and ced-4-dependent Apoptosis and Aging. J Biol. Chem.vol.278 no.24, 22031-22036, 2003
    4. Michihiko Fujii, Yuki Matsumoto, Nanae Tanaka, Kensuke Miki, Toshikazu Suzuki,Naoaki Ishii, and Dai Ayusawa. Mutations in Chemosensory Cilia Cause Resistance to Paraquat in Nematode Caenorhabditis elegans. J Biol. Chem.vol.279 no.19, 20277-20282, 2004
    5. Daisuke Nakai, Takahiko Shimizu, Hidetoshi Nojiri, Satoshi Uchiyama, Hideo Koike, Mayumi Takahashi, Katsuiku Hirokawa and Takuji Shirasawa. coq7/clk-1 regulates mitochondrial respiration and the generation of reactive oxygen species via coenzyme Q. Aging Cell (2004) 3,pp273-281
    6. Motoichi Kurisawa, Joo Eun Chung, Hiroshi Uyama and Shiro Kobayashi.Oxidative coupling of epigallocatechin gallate amplifies antioxidant activity and inhibits xanthine oxidase activity. Chem. Commun. 2004 Feb 7; (3):294-5
    7. Takamasa Ishii, Kayo Yasuda, Akira Akatsuka, Okio Hino, Philip S. Hartman, and Naoaki Ishii. A Mutation in the SDHC Gene of Complex Ⅱ Increases Oxidative Stress, Resulting in Apoptosis and Tumorigenesis. Cancer Research 65,203-209, January 1, 2005
    8. Ken-ichiro Yamamoto, Kazuyoshi Kobayashi, Kosuke Endo, Takehiro Miyasaka, Seiichi Mochizuki, Fukashi Kohori and Kiyotaka Sakai. Hollow-fiber blood-dialysis membranes: superoxide generation, permeation, and dismutation measured by chemiluminescence. J Artif Organs. 2005; 8(4):257-62.
    9. Hidetoshi Nojiri, Takahiko Shimizu, Masabumi Funakoshi, Osamu Yamaguchi, Heying Zhou, Satoru Kawakami, Yutaka Ohta, Manabu Sami, Toshiaki Tachibana, Hiroshi Ishikawa, Hisashi Kurosawa, Ronald Kahn, Kinya Otsu, and Takuji Shirasawa, Oxidative stress causes heart failure with impaired mitochondrial respiration. J Biol. Chem. 2006 Nov 3; 281(44):33789-801.
    10. Toshimitsu KUROKAWA, Shirou ITAGAKI, Toshihiko YAMAJI, Chie NAKATA, Toshihiro NODA,Takeshi HIRANO, and Ken ISEKI. Antioxidant Activity of a Novel Extract from Bamboo Grass (AHSS) against Ischemia-Reperfusion Injury in Rat Small Intestine. Biol. Pharm. Bull. 29(11) 2301—2303 (2006)
    11. Yoshihiro Saito, Daisuke Umemoto, Ai Matsunaga, Takaji Sato and Masahiko Chikuma. Antioxidant activities of Synthesized Selenocompounds without Selenol Groups. Biomed. Res. Trace. Elements 17 (4) 423-426(2006)
    12. Ohnuki H, Mizttani A and Otani H, Oral ingestion of cow’s milk immunoglobulin G stimulates some cellular immune systems and suppresses humoral immune responses in mouse.  International Immunopharmacology 6 (8) 1315-1322 (2006)
    13. Ken-ichiro Yamamoto, Masato Matsuda, Masashi Okuoka, Taiji Yakushiji, Makoto Fukuda, Takehiro Miyasaka, Yutaka Matsumoto, Kiyotaka Sakai. Antioxidation property of vitamin E-coated polysulfone dialysis membrane and recovery of oxidized vitamin E by vitamin C treatment. J MEMBRANE SCI 01/2007; 302(1):115-118.
    14. Tsukagoshi K, Taniguchi T, Nakajima R. Analysis of antioxidants using a capillary electrophoresis with chemiluminescence detection system. Anal Chim Acta.2007 Apr 18; 589(1):66-70.
    15. Sumino Yanase and Naoaki Ishii. Hyperoxia Exposure Induced Hormesis Decreases Mitochondrial Superoxide Radical Levels via Ins/IGF-1 Signaling Pathway in a Long-living age-1 Mutant of Caenorhabditis elegans. J. Radiat. Res. 2008 May; 49(3):211-8
    16. Shinya Mitsuhashi, Akiko Saito, Noriyuki Nakajima, Hiroshi Shima and Makoto Ubukata. Pyrogallol Structure in Polyphenols is Involved in Apoptosis-induction on HEK293T and K562 Cells. Molecules2008, 13, 2998-3006
    17. Takuro Yamaguchi, Akira Onodera, Kayo Yasuda, Yasunori Nishio, Makoto Arai, Michio Tsuda, Masaki Miyazawa, Philip S. Hartman and Naoaki Ishii. A low cost and quick assay system using the free-living nematode Caenorhabditis elegans to determine the effects of Kampo medicines on life span. AATEX 13 (1) 1-10, 2008
    18. Masaki MIYAZAWA, Takamasa ISHII, Kayo YASUDA, Setsuko NODA, Hiromi ONOUCHI, Philip S. HARTMAN and Naoaki ISHII. The Role of Mitochondrial Superoxide Anion (O2) on Physiological Aging in C57BL/6J Mice. J. Radiat. Res., 50, 73–82 (2009)
    19. Toru Sasaki, Analysis of Aging-related Oxidative Stress Status in Normal Aging Animals and Development of Anti-aging Interventions. YAKUGAKU ZASSHI 130(1) 29-42(2010) (In Japanese)
    20. Koumei Yazaki, Chinatsu Yoshikoshi, Satoru Oshiro, and Sumino Yanase. Supplemental Cellular Protection by a Carotenoid Extends Lifespan via Ins/IGF-1 Signaling in Caenorhabditis elegans. Oxidative Medicine and Cellular Longevity, Volume 2011, Article ID 596240, 9 pages
    21. Okutsu K, Yoshizaki Y, Takamine K, Tamaki H, Ito K, Sameshima Y. Development of a heat-processing method for koji to enhance its antioxidant activity. J.Bioaci.Bioeng vol113 no3 349-354(2012)
    22. Yuichi Uchino, Tetsuya Kawakita, Masaki Miyazawa, Takamasa Ishii, Hiromi Onouchi, Kayo Yasuda, Yoko Ogawa, Shigeto Shimmura, Naoaki Ishii, Kazuo Tsubota. Oxidative Stress Induced Inflammation Initiates Functional Decline of Tear Production. PLoS One. 2012; 7(10): e45805
    23. Kenji Miura, Ayaka Sato, Hayato Shiba, Seung Won Kanga, Hiroshi Kamada, Hiroshi Ezura. Accumulation of antioxidants and antioxidant activity in tomato, Solanum lycopersicum, are enhanced by the transcription factor SlICE1. Plant Biotechnology 29, 261-269 (2012)
    24. Shimada Hideaki, Yamaoka Yusuke, Morita Reiko, Mizuno Takayuki, Gotoh Kousei, Higuchi Toshiyuki, Shiraishi Takayuki, Imamura Yorishige. Possible mechanism of superoxide formation through redox cycling of plumbagin in pig heart. Toxicology in Vitro, 26 (2) 252-257, 2012
    25. Kaoru Akiyama, Yasuhiko Ohota and Kenji Tokunaga, Evalution of reactive oxigenproduction using whole blood samples by chemiluminescence. J. Analytical Bio-Science vol.35,No.2 (2012)(In Japanese)
    26. Shigeki Kobayashi and Sachi Kanai. Superoxide Scavenging Effects of Some Novel Bis-Ligands and Their Solvated Metal Complexes Prepared by the Reaction of Ligands with Aluminum, Copper and Lanthanum Ions. Molecules2013, 18, 6128-6141.
    Product information of AB-2950 MPEC

    MPEC is a chemiluminescence reagent that specifically reacts with superoxide. 

    Page Top 

    NATIVEN AE-6760
    1. Hashimoto M et al., Separation and structural analysis of lipoprotein in a lipopolysaccharide preparation from Porphyromonas gingivalis. Int Immunol. Oct;16(10):1431-7 (2004)
    2. Takeuchi M et al., Saccharomyces cerevisiae Rot1p Is an ER-Localized Membrane Protein That May Function with BiP/Kar2p in Protein Folding. J Biochem. Mar;139(3): 597-605 (2006)
    3. Ozawa C et al., Synthesis of glycopeptide dendrimer by a convergent method. Tetrahedron Jul; 63(39): 9685-9690 (2007)
    Product information of AE-6760 NATIVEN


    AE-6760 NATIVEN is the system for preparative electrophoresis of protein or nucleic acids, which is based on a disc gel electrophoresis deviceand able to separate and recover proteins or DNA through polyacrylamide electrophoresis automatically. On the product page, you can find brief introduction movie clips of this system and its application.

    Page Top

    Fermograph AF-1101W
    1. Pham Van Hung, Tomoko Maeda, Hiroaki Yamauchi, Naofumi Morita, Dough and breadmaking properties of various strong wheat grains cultivated in Japan. J. Appl. Glycosci., 52, 15-21 (2005)
    2. Kanenori Tanaka, Zenta Nishio, Norio Iriki, Tadashi Tabiki, Wakako Funatsuki, Hiroaki Yamanouchi, Comparison of Quality characteristics of waxy wheat using a near isogenic line, Breeding Science 55, 87-92 (2005)
    3. Sadako Takasaki, Yoji Kato, Masatsune Murata, Seiichi Homma, Shunro Kawakishi, Effects of peroxidase and hydrogen peroxide on the dityrosine formation and the mixing characteristics of wheat-flour dough, Biosci. Biotechnol. Biochem., 69(9), 1686-1692 (2005)
    4. Miwako Ito, Shun-Ju Kim, Zaidul-Islam Sarker, Naoto Hashimoto, Takahiro Noda, Shigenobu Takigawa, Chie Matsuura-Endo, Tetsuya Horibata, Yoshihiko Nakamura, Naoyoshi Inouchi, Michihiro Fukushima, Hiroaki Yamauchi, Staling and texture of bread prepared from new Japanese bread wheat varirties with slightly low-amylose starch, Food Sci. Technol. Res., 13(2), 121-128 (2007)
    5. Tomohiro Kaino, Tetsuya Tateiwa, Satomi Mizukami-Murata, Jun Shima, Hiroshi Takagi, Self-cloning baker's yeast that accumulate proline enhance freeze tolerance in doughs, Appl. Environ. Microbiol., 74(18), 5845-5849 (2008)
    6. Daisuke Watanabe, Tomonori Ota, Fusajiro Nitta, Takeshi Akao, Hitoshi Shimoi, Automatic measurement of sake fermentation kinetics using a multi-channel gas monitor system, J. Biosci. Bioeng., 112(1), 54-57 (2011)
    7. Daisuke Watanabe, Satoru Nogami, Yoshikazu Ohya, Yoichiro Kanno, Yan Zhou, Takeshi Akao, Hitoshi Shimoi, Ethanol fermentation driven by elevated expression of the G1 cyclin gene CLN3 in sake yeast, J. Biosci. Bioeng., 112(6), 577-582 (2011)
    8. Chiemi Noguchi, Daisuke Watanabe, Yan Zhou, Takeshi Akao, Hitoshi Shimoi, Association of constitutive hyperphosphorylation of Hsf1p with a defective ethanol stress response in Saccharomyces cervisiae sake yeast strains, Appl. Environ. Microbiol., 78(2), 385-392 (2012)
    9. Daisuke Watanabe, Yuya Araki, Yan Zhou, Naoki Maeya, Takeshi Akao, Hitoshi Shimoi, Appl. Environ. Microbiol., 78(11), 4008-4016 (2012)
    Product information of AF-1101W Fermograph


     AF-1101W Fermograph is an automated multi-channel gas monitor to evaluate gas production ability of microorganisms such as baker’s yeast, sake yeast (for brewing Japanese Sake) for research, screening, and/or quality control of yeast strains, bread formula, culture conditions, etc.

    Page Top